Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.960
1.
Cells ; 13(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38727274

α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson's disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of different α-syn species could help to select suitable aggregates for diagnosis and elucidate the pathogenesis of diseases. Here, we characterized ONE-induced wild-type (WT) α-syn aggregates (OW), ONE-induced phosphorylated α-syn (p-α-syn) aggregates (OP), agitation-induced α-syn preformed fibrils (PFF), and agitation-induced p-α-syn preformed fibrils (pPFF). Thioflavin T (ThT) dying demonstrated that OW and OP had fewer fibrils than the PFF and pPFF. Transmission electron microscopy revealed that the lengths of PFF and pPFF were similar, but the diameters differed. OW and OP had more compact structures than PFF and pPFF. Aggregation of p-α-syn was significantly faster than WT α-syn. Furthermore, OW and OP were more sodium dodecyl sulfate-stable and proteinase K-resistant, suggesting greater stability and compactness, while aggregates of PFF and pPFF were more sensitive to proteinase K treatment. Both ONE- and agitation-induced aggregates were cytotoxic when added exogenously to SH-SY5Y cells with increasing incubation times, but the agitation-induced aggregates caused cell toxicity in a shorter time and more p-α-syn inclusions. Similarly, p-proteins were more cytotoxic than non-p-proteins. Finally, all four aggregates were used as standard antigens to establish sandwich enzyme-linked immunosorbent assay (ELISA). The results showed that the recognition efficiency of OW and OP was more sensitive than that of PFF and pPFF. The OW- and OP-specific ELISA for detection of p-α-syn and α-syn in plasma samples of Thy1-α-syn transgenic mice showed that the content of aggregates could reflect the extent of disease. ONE and agitation induced the formation of α-syn aggregates with distinct biophysical properties and biomedical applications.


Aldehydes , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Aldehydes/metabolism , Phosphorylation , Humans , Animals , Mice , Cell Line, Tumor , Parkinson Disease/metabolism , Parkinson Disease/pathology , Biophysical Phenomena
2.
Nat Commun ; 15(1): 3835, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714700

Aggregated forms of α-synuclein constitute the major component of Lewy bodies, the proteinaceous aggregates characteristic of Parkinson's disease. Emerging evidence suggests that α-synuclein aggregation may occur within liquid condensates formed through phase separation. This mechanism of aggregation creates new challenges and opportunities for drug discovery for Parkinson's disease, which is otherwise still incurable. Here we show that the condensation-driven aggregation pathway of α-synuclein can be inhibited using small molecules. We report that the aminosterol claramine stabilizes α-synuclein condensates and inhibits α-synuclein aggregation within the condensates both in vitro and in a Caenorhabditis elegans model of Parkinson's disease. By using a chemical kinetics approach, we show that the mechanism of action of claramine is to inhibit primary nucleation within the condensates. These results illustrate a possible therapeutic route based on the inhibition of protein aggregation within condensates, a phenomenon likely to be relevant in other neurodegenerative disorders.


Caenorhabditis elegans , Parkinson Disease , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Caenorhabditis elegans/metabolism , Animals , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Humans , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Disease Models, Animal , Lewy Bodies/metabolism , Kinetics
3.
Elife ; 122024 May 07.
Article En | MEDLINE | ID: mdl-38713200

The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.


Hippocampus , Neurons , Protein Binding , Synapsins , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/chemistry , Animals , Synapsins/metabolism , Synapsins/genetics , Mice , Neurons/metabolism , Hippocampus/metabolism , Synaptic Vesicles/metabolism , Protein Domains , Cells, Cultured , Humans , Synapses/metabolism
4.
J Am Chem Soc ; 146(15): 10537-10549, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38567991

The aberrant aggregation of α-synuclein (αS) into amyloid fibrils is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease. Although the structural properties of mature amyloids of αS are currently understood, the nature of transient protofilaments and fibrils that appear during αS aggregation remains elusive. Using solid-state nuclear magnetic resonance (ssNMR), cryogenic electron microscopy (cryo-EM), and biophysical methods, we here characterized intermediate amyloid fibrils of αS forming during the aggregation from liquid-like spherical condensates to mature amyloids adopting the structure of pathologically observed aggregates. These transient amyloid intermediates, which induce significant levels of cytotoxicity when incubated with neuronal cells, were found to be stabilized by a small core in an antiparallel ß-sheet conformation, with a disordered N-terminal region of the protein remaining available to mediate membrane binding. In contrast, mature amyloids that subsequently appear during the aggregation showed different structural and biological properties, including low levels of cytotoxicity, a rearranged structured core embedding also the N-terminal region, and a reduced propensity to interact with the membrane. The characterization of these two fibrillar forms of αS, and the use of antibodies and designed mutants, enabled us to clarify the role of critical structural elements endowing intermediate amyloid species with the ability to interact with membranes and induce cytotoxicity.


Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/toxicity , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Amyloid/chemistry , Protein Conformation, beta-Strand
5.
Nat Chem Biol ; 20(5): 634-645, 2024 May.
Article En | MEDLINE | ID: mdl-38632492

Machine learning methods hold the promise to reduce the costs and the failure rates of conventional drug discovery pipelines. This issue is especially pressing for neurodegenerative diseases, where the development of disease-modifying drugs has been particularly challenging. To address this problem, we describe here a machine learning approach to identify small molecule inhibitors of α-synuclein aggregation, a process implicated in Parkinson's disease and other synucleinopathies. Because the proliferation of α-synuclein aggregates takes place through autocatalytic secondary nucleation, we aim to identify compounds that bind the catalytic sites on the surface of the aggregates. To achieve this goal, we use structure-based machine learning in an iterative manner to first identify and then progressively optimize secondary nucleation inhibitors. Our results demonstrate that this approach leads to the facile identification of compounds two orders of magnitude more potent than previously reported ones.


Drug Discovery , Machine Learning , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Humans , Drug Discovery/methods , Protein Aggregates/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Structure-Activity Relationship
6.
J Am Chem Soc ; 146(18): 12702-12711, 2024 May 08.
Article En | MEDLINE | ID: mdl-38683963

Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion. Here, we investigate the binding of PSMα3 to α-synuclein oligomers to discover the mechanistic basis of this protective activity. We find that PSMα3 selectively targets an α-synuclein N-terminal motif (residues 36-61) that populates a distinct conformation in the mono- and oligomeric states. This α-synuclein region plays a pivotal role in oligomer-to-fibril conversion as its absence renders the central NAC domain insufficient to prompt this structural transition. The hereditary mutation G51D, associated with early onset Parkinson's disease, causes a conformational fluctuation in this region, leading to delayed oligomer-to-fibril conversion and an accumulation of oligomers that are resistant to remodeling by molecular chaperones. Overall, our findings unveil a new targetable region in α-synuclein oligomers, advance our comprehension of oligomer-to-amyloid fibril conversion, and reveal a new facet of α-synuclein pathogenic mutations.


alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Humans , Parkinson Disease/metabolism , Amino Acid Motifs
7.
Biochemistry ; 63(9): 1162-1169, 2024 May 07.
Article En | MEDLINE | ID: mdl-38668883

Parkinson's disease (PD) is characterized by the toxic oligomeric and fibrillar phases formed by monomeric alpha-synuclein (α-syn). Certain nanoparticles have been demonstrated to promote protein aggregation, while other nanomaterials have been found to prevent the process. In the current work, we use nuclear magnetic resonance spectroscopy in conjunction with isothermal titration calorimetry to investigate the cause and mechanism of these opposing effects at the amino acid protein level. The interaction of α-syn with two types of nanomaterials was considered: citrate-capped gold nanoparticles (AuNPs) and graphene oxide (GO). In the presence of AuNPs, α-syn aggregation is accelerated, whereas in the presence of GO, aggregation is prevented. The study indicates that GO sequesters the NAC region of α-syn monomers through electrostatic and hydrophobic interactions, leading to a reduced elongation rate, and AuNPs leave the NAC region exposed while binding the N-terminus, leading to higher aggregation. The protein's inclination toward quicker aggregation is explained by the binding of the N-terminus of α-syn with the gold nanoparticles. Conversely, a comparatively stronger interaction with GO causes the nucleation and growth phases to be postponed and inhibits intermolecular interactions. Our finding offers novel experimental insights at the residue level regarding the aggregation of α-syn in the presence of various nanomaterials and creates new opportunities for the development of suitably functionalized nanomaterial-based therapeutic reagents against Parkinson's and other neurodegenerative diseases.


Gold , Graphite , Metal Nanoparticles , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Graphite/chemistry , Humans , Protein Aggregates/drug effects , Parkinson Disease/metabolism , Nanostructures/chemistry , Citric Acid/chemistry , Citric Acid/metabolism , Hydrophobic and Hydrophilic Interactions
8.
Int J Biol Macromol ; 267(Pt 2): 131423, 2024 May.
Article En | MEDLINE | ID: mdl-38583832

This article reveals the binding mechanism between glycyrrhizic acid (GA) and α-synuclein to may provide further information for the modulation of synucleinopathies using bioactive compounds. Therefore, the inhibitory activities of GA against α-synuclein aggregation and induced neurotoxicity were evaluated using different assays. Results showed that α-synuclein-GA binding was mediated by intermolecular hydrogen bonds leading to the formation of a slightly folded complex. Theoretical studies revealed that GA binds to the N-terminal domain of α-synuclein and triggers a compact structure around a major part of the N-terminal and the NAC regions along with fluctuations in the C-terminal domain, which are prerequisites for the inhibition of α-synuclein aggregation. Then, the cellular assays showed that GA as a potential small molecule can inhibit the oligomerization of α-synuclein and relevant neurotoxicity through modulation of neural viability, membrane leakage, and ROS formation in a concentration-dependent manner. As a result, the primary mechanism of GA's anti-aggregation and neuroprotective activities is the reorganized α-synuclein structure and fluctuating C-terminal domain, which promotes long-range transient intramolecular contacts between the N-terminal and the C-terminal domain.


Glycyrrhizic Acid , Protein Aggregates , Synucleinopathies , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Cell Survival/drug effects , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Hydrogen Bonding , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Binding , Reactive Oxygen Species/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
9.
J Colloid Interface Sci ; 667: 723-730, 2024 Aug.
Article En | MEDLINE | ID: mdl-38641462

HYPOTHESIS: Graphene quantum dots (GQDs) with various functional groups are hypothesized to inhibit the α-synuclein (αS) dimerization, a crucial step in Parkinson's disease pathogenesis. The potential of differently functionalized GQDs is systematically explored. EXPERIMENTS: All-atom replica-exchange molecular dynamics simulations (accumulating to 75.6 µs) in explicit water were performed to study the dimerization of the αS non-amyloid component region and the influence of GQDs modified with various functional groups. Conformation ensemble, binding behavior, and free energy analysis were conducted. FINDINGS: All studied GQDs inhibit ß-sheet and backbone hydrogen bond formation in αS dimers, leading to looser oligomeric conformations. Charged GQDs severely impede the growth of extended ß-sheets by providing extra contact surface. GQD binding primarily disrupts αS inter-peptide interactions through π-π stacking, CH-π interactions, and for charged GQDs, additionally through salt-bridge and hydrogen bonding interactions. GQD-COO- showed the most optimal inhibitory effect, binding mode, and intensity, which holds promise for the development of nanomedicines targeting amyloid aggregation in neurodegenerative diseases.


Graphite , Molecular Dynamics Simulation , Quantum Dots , alpha-Synuclein , Graphite/chemistry , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , alpha-Synuclein/antagonists & inhibitors , Quantum Dots/chemistry , Hydrogen Bonding , Protein Multimerization , Humans
10.
Anal Chem ; 96(15): 6021-6029, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38557001

Sensitive analytical techniques that are capable of detecting and quantifying disease-associated biomolecules are indispensable in our efforts to understand disease mechanisms and guide therapeutic intervention through early detection, accurate diagnosis, and effective monitoring of disease. Parkinson's Disease (PD), for example, is one of the most prominent neurodegenerative disorders in the world, but the diagnosis of PD has primarily been based on the observation of clinical symptoms. The protein α-synuclein (α-syn) has emerged as a promising biomarker candidate for PD, but a lack of analytical methods to measure complex disease-associated variants of α-syn has prevented its widespread use as a biomarker. Antibody-based methods such as immunoassays and mass spectrometry-based approaches have been used to measure a limited number of α-syn forms; however, these methods fail to differentiate variants of α-syn that display subtle differences in only the sequence and structure. In this work, we developed a cyclic ion mobility-mass spectrometry method that combines multiple stages of activation and timed ion selection to quantify α-syn variants using both mass- and structure-based measurements. This method can allow for the quantification of several α-syn variants present at physiological levels in biological fluid. Taken together, this approach can be used to galvanize future efforts aimed at understanding the underlying mechanisms of PD and serves as a starting point for the development of future protein-structure-based diagnostics and therapeutic interventions.


Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Biomarkers/analysis , Mass Spectrometry , Antibodies
11.
Nat Commun ; 15(1): 3564, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670952

Biomolecular condensates play an important role in cellular organization. Coacervates are commonly used models that mimic the physicochemical properties of biomolecular condensates. The surface of condensates plays a key role in governing molecular exchange between condensates, accumulation of species at the interface, and the stability of condensates against coalescence. However, most important surface properties, including the surface charge and zeta potential, remain poorly characterized and understood. The zeta potential of coacervates is often measured using laser doppler electrophoresis, which assumes a size-independent electrophoretic mobility. Here, we show that this assumption is incorrect for liquid-like condensates and present an alternative method to study the electrophoretic mobility of coacervates and in vitro condensate models by microelectrophoresis and single-particle tracking. Coacervates have a size-dependent electrophoretic mobility, originating from their fluid nature, from which a well-defined zeta potential is calculated. Interestingly, microelectrophoresis measurements reveal that polylysine chains are enriched at the surface of polylysine/polyaspartic acid complex coacervates, which causes the negatively charged protein ɑ-synuclein to adsorb and accumulate at the interface. Addition of ATP inverts the surface charge, displaces ɑ-synuclein from the surface and may help to suppress its interface-catalyzed aggregation. Together, these findings show how condensate surface charge can be measured and altered, making this microelectrophoresis platform combined with automated single-particle tracking a promising characterization technique for both biomolecular condensates and coacervate protocells.


Electrophoresis , Surface Properties , Electrophoresis/methods , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Polylysine/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Humans , Static Electricity
13.
Nat Commun ; 15(1): 2750, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553463

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.


Lewy Body Disease , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Cryoelectron Microscopy , Lewy Bodies/pathology , Lewy Body Disease/pathology , Parkinson Disease/pathology
14.
Phys Chem Chem Phys ; 26(14): 10998-11013, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38526443

The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid ß, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to model membranes formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the model membranes take an active role in the reaction. The binding of α synuclein to the model membranes immediately induces a major structural change in the lipid assembly, which leads to a break-up into small and mostly disc- or rod-like lipid-protein particles. This transition can be reversed by temperature changes or proteolytic protein removal. Incubation of the small lipid-α-synuclein particles for several hours, however, leads to amyloid fibril formation, whereby the lipids are incorporated into the amyloid fibrils.


Amyloid beta-Peptides , alpha-Synuclein , alpha-Synuclein/chemistry , Scattering, Small Angle , X-Ray Diffraction , Amyloid/chemistry , Lipids
15.
Int J Biol Macromol ; 264(Pt 1): 130632, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447831

Plasmalogens comprise a large fraction of the total phospholipids in plasma membranes. These molecules modulate membrane fluidity, produce inflammatory mediators mitigating effects of metabolic stresses. A growing body of evidence suggests that an onset of Parkinson's disease (PD), a severe neurodegenerative pathology, can be triggered by metabolic changes in plasma membranes. However, the role of plasmalogens in the aggregation of α-synuclein (α-syn), an expected molecular cause of PD, remains unclear. In this study we examine the effect of choline plasmalogens (CPs), unique phospholipids that have a vinyl ether linkage at the sn-1 position of glycerol, on the aggregation rate of α-syn. We found that the length and saturation of fatty acids (FAs) in CPs change rates of protein aggregation. We also found drastic changes in the morphology of α-syn fibrils formed in the presence of different CPs compared to α-syn fibrils grown in the lipid-free environment. At the same time, we did not observe substantial changes in the secondary structure and toxicity of α-syn fibrils formed in the presence of different CPs. These results indicate that the length and saturation of FAs in CPs present in the plasma membrane can alter α-syn stability and modulate its aggregation properties, which, in turn can accelerate or delay the onset of PD.


Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Plasmalogens , Amyloid/chemistry , Parkinson Disease/metabolism
16.
Protein Sci ; 33(4): e4956, 2024 Apr.
Article En | MEDLINE | ID: mdl-38511511

Copper ion dys-homeostasis is linked to neurodegenerative diseases involving amyloid formation. Even if many amyloidogenic proteins can bind copper ions as monomers, little is known about copper interactions with the resulting amyloid fibers. Here, we investigate copper interactions with α-synuclein, the amyloid-forming protein in Parkinson's disease. Copper (Cu(II)) binds tightly to monomeric α-synuclein in vitro involving the N-terminal amine and the side chain of His50. Using purified protein and biophysical methods in vitro, we reveal that copper ions are readily incorporated into the formed amyloid fibers when present at the start of aggregation reactions, and the metal ions also bind if added to pre-formed amyloids. Efficient incorporation is observed for α-synuclein variants with perturbation of either one of the high-affinity monomer copper-binding residues (i.e., N-terminus or His50) whereas a variant with both N-terminal acetylation and His50 substituted with Ala does not incorporate any copper into the amyloids. Both the morphology of the resulting α-synuclein amyloids (amyloid fiber pitch, secondary structure, proteinase sensitivity) and the copper chemical properties (redox activity, chemical potential) are altered when copper is incorporated into amyloids. We speculate that copper chelation by α-synuclein amyloids contributes to the observed copper dys-homeostasis (e.g., reduced bioavailable levels) in Parkinson's disease patients. At the same time, amyloid-copper interactions may be protective to neuronal cells as they will shield aberrantly free copper ions from promotion of toxic reactive oxygen species.


Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Copper/chemistry , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Ions
17.
Protein Sci ; 33(4): e4951, 2024 Apr.
Article En | MEDLINE | ID: mdl-38511533

The Parkinson's-associated protein α-synuclein (α-syn) can undergo liquid-liquid phase separation (LLPS), which typically leads to the formation of amyloid fibrils. The coincidence of LLPS and amyloid formation has complicated the identification of the molecular determinants unique to LLPS of α-syn. Moreover, the lack of strategies to selectively perturb LLPS makes it difficult to dissect the biological roles specific to α-syn LLPS, independent of fibrillation. Herein, using a combination of subtle missense mutations, we show that LLPS of α-syn is highly sensitive to its sequence complexity. In fact, we find that even a highly conservative mutation (V16I) that increases sequence complexity without perturbing physicochemical and structural properties, is sufficient to reduce LLPS by 75%; this effect can be reversed by an adjacent V-to-I mutation (V15I) that restores the original sequence complexity. A18T, a complexity-enhancing PD-associated mutation, was likewise found to reduce LLPS, implicating sequence complexity in α-syn pathogenicity. Furthermore, leveraging the differences in LLPS propensities among different α-syn variants, we demonstrate that fibrillation of α-syn does not necessarily correlate with its LLPS. In fact, we identify mutations that selectively perturb LLPS or fibrillation of α-syn, unlike previously studied mutations. The variants and design principles reported herein should therefore empower future studies to disentangle these two phenomena and distinguish their (patho)biological roles.


Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Phase Separation , Mutation, Missense , Mutation , Amyloid/chemistry
18.
Biophys Chem ; 307: 107196, 2024 Apr.
Article En | MEDLINE | ID: mdl-38335809

Fibril formation from alpha-synuclein is a key point in Parkinson's disease, multiple system atrophy, and other synucleinopathies. The mechanism of the amyloid-like conversion followed by the formation of pre-fibrillar soluble oligomers and fibrils is not completely clear; furthermore, it is unclear how the Parkinson's disease-related point mutations located in the pre-NAC region enhance fibrillation. In the present paper, atomistic replica exchange molecular dynamics simulations of the full-length alpha-synuclein and its two mutants, A53T and E46K, elucidated amyloid conversion intermediates. Both mutants demonstrated an enhanced tendency for the conversion but in different manners; the main intermediate conformations populated in the WT alpha-synuclein conformational ensemble disappeared due to mutations, indicating a different conversion pathway. Analysis of the preferable beta-hairpin positions and intermediate conformations seems to reflect a tendency to form a particular amyloid fibril polymorph. A strong elevation of amyloid transformation level was shown also for Ser129-phosphorylated alpha-synuclein. Altered intermediate conformations, the most preferable beta-hairpin positions in the NAC region, and prevalent salt bridges propose the formation of so-called polymorph 2 or even a novel type of fibrils. A better understanding of the detailed mechanism of the amyloid conversion sheds light on the effect of Lewy body-related phosphorylation and might help in the development of new therapeutics for synucleinopathies.


Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Amyloid/chemistry , Phosphorylation , Static Electricity , Molecular Dynamics Simulation , Amyloidogenic Proteins/metabolism
19.
Protein Sci ; 33(3): e4894, 2024 Mar.
Article En | MEDLINE | ID: mdl-38358134

α-synuclein is an intrinsically disordered protein (IDP) whose aggregation in presynaptic neuronal cells is a pathological hallmark of Lewy body formation and Parkinson's disease. This aggregation process is likely affected by the crowded macromolecular cellular environment. In this study, α-synuclein was studied in the presence of both a synthetic crowder, Ficoll70, and a biological crowder composed of lysed cells that better mimics the biocomplexity of the cellular environment. 15 N-1 H HSQC NMR results show similar α-synuclein chemical shifts in non-crowded and all crowded conditions implying that it remains similarly unstructured in all conditions. Nevertheless, both HSQC NMR and fluorescence measurements indicate that, only in the cell lysate, α-synuclein forms aggregates over a timescale of 48 h. 15 N-edited diffusion measurements indicate that all crowders slow down the α-synuclein's diffusivity. Interestingly, at high concentrations, α-synuclein diffuses faster in cell lysate than in Ficoll70, possibly due to additional soft (e.g., electrostatic or hydrophobic) interactions. 15 N-edited relaxation measurements show that some residues are more mobile in cell lysate than in Ficoll70; the rates that are most different are predominantly in hydrophobic residues. We thus examined cell lysates with reduced hydrophobicity and found slower dynamics (higher relaxation rates) in several α-synuclein residues. Taken together, these experiments suggest that while cell lysate does not substantially affect α-synuclein structure (HSQC spectra), it does affect chain dynamics and translational diffusion, and strongly affects aggregation over a timescale of days, in a manner that is different from either no crowder or an artificial crowder: soft hydrophobic interactions are implicated.


Intrinsically Disordered Proteins , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Protein Conformation , Macromolecular Substances/chemistry , Intrinsically Disordered Proteins/chemistry
20.
Talanta ; 271: 125720, 2024 May 01.
Article En | MEDLINE | ID: mdl-38309112

α-synuclein oligomer is a marker of Parkinson's disease. The traditional enzyme-linked immunosorbent assay for α-synuclein oligomer detection is not conducive to large-scale application due to its time-consuming, high cost and poor stability. Recently, DNA-based biosensors have been increasingly used in the detection of disease markers due to their high sensitivity, simplicity and low cost. In this study, based on the DNAzyme-driven DNA bipedal walking method, we developed a signal-on electrochemical sensor for the detection of α-syn oligomers. Bipedal DNA walkers have a larger walking area and faster walking kinetics, providing higher amplification efficiency compared to conventional DNA walkers. The DNA walker is driven via an Mg2+-dependent DNAzyme, and the binding-induced DNA walker will continuously clamp the MB, resulting in the proliferation of Fc confined near the GE surface. The linear range and limit of detection were 1 fg/mL to 10 pg/mL and 0.57 fg/mL, respectively. The proposed signal-on electrochemical sensing strategy is more selective. It will play a significant role in the sensitive and precise electrochemical analysis of other proteins.


Biosensing Techniques , DNA, Catalytic , DNA, Catalytic/chemistry , alpha-Synuclein/chemistry , DNA/chemistry , Nucleic Acid Hybridization
...